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The author's method [1] of analyzing transport processes associated
with the injection of a fuel-oxidizer mixture into a laminar boundary
layer through a porous plate can be extended to the case of sublimation
of a surface in a high-temperature gas flow. Such conditions may de~
velop in hybrid (combined) systems in which a mixture of fuel and oxi-
dizer from the vaporizing element must mix and react with an external
oxidizer flow.

Preliminary results [2~4] indicate that in "pure” systems (in which
oxidizer is not mixed with the solid propellant) the reaction kinetics
have secondary significance as compared with the transport processes
in the boundary layer and in the majority of cases can be ignored for
all practical purposes. However, in other hybrid systems and, in par-
ticular, where a certain amount of oxidizer is mixed with the solid
propellant, the reaction kinetics may acquire considerable importance.
The methods of analyzing transport processes in hybrid systems pro=-
posed in [3,4], although they supplement one another, do not give a
sufficient description.

Distribution of concentrations,

positions of reaction planes

and reaction zones in the 5
coordinate system.

The present method of theoretical investigation of hybrid systems,
although based on a diffusion interaction mechanism, permits a some-
what better understanding of the kinetic laws thanks to the assumption
of two reaction fronts.

As shown in [1], this is conditioned by the fact that in the case of
simultaneous vaporization of the fuel and oxidizer components the
mixture temperature may reach the critical reaction temperature T* (con-
dition of formation of the first front) before complete stoichiometry is
achieved. If the mass velocity of the fuel component is greater than
the stoichiometric value corresponding to the presence of oxidizer in
the mixture, the occurrence of a second reaction front will be deter-
mined by attainment of the full stoichiometric relation between the
mass flow of fuel unreacted in the first front and the external oxidizer
flow.

We will consider the problem of the laminar flow
of a compressible gas (oxidizer) over a vaporizing
flat plate with partial vapor pressure of the plate ma-
terial in the free stream less than the saturated vapor
pressure at the surface temperature; if the latter is
less than the temperature at the triple point of the
phase diagram, the plate material will vaporize, by-
passing the liquid phase. We assume that the plate
material is a hybrid system and vaporizes if the mass
velocity of the fuel component is greater than the

stoichiometric value corresponding to the presence of
oxidizer in the vaporizing mixture. In the boundary
layer there are two reaction fronts (Fig. 1): ¢ = ¢(n)
and ¢ = P(n).

As before, we assume that the chemical reaction
rates considerably exceed the rate of diffusion of the
components, as a result of which the chemical inter-
action is chiefly determined by diffusion of the com-
ponents to the reaction planes, which we will treat as
infinitely thin surfaces forming surfaces of discon-
tinuity in the boundary layer. All the assumptions of
boundary-layer theory are retained, the Prandtl num-
ber Npy # 1 = const, the Schmidt number Ngec # 1=
= const and Npy # Ngc-

Since the mechanisms of the transport processes
are similar for sublimation and injection, we will use
the system of equations and boundary conditions for
a laminar boundary layer presented in [1,5]. The only
difference is in the boundary conditions at the vapor-
izing hybrid surface in view of its self-regulating re-
lationship with temperature and pressure.

We represent the concentration of fuel component
at the surface of the plate in the form

Cmv:'%&nﬂ ’ (1)

where mw is the molecular weight of the vaporizing
binary mixture at the plate surface, which if Cmw +
+ Cgw = 1 can be represented in terms of the concen~
tration and the molecular weights of the components
as follows:

ez e (2)

My = o G ( — Cr)

In the case of equilibrium vaporization the partial
vapor pressure pmw of the vaporizing material at the
wall is equal to the partial saturated vapor pressure
p*py at the wall temperature Ty, which for perfect
gases and without allowance for the change in volume
obeys the Clausius-Clapeyron law

Py L ( 1 1 )4

0o T E\T,TT @
Here, Tg is the sublimation temperature.

Substituting the value of my from (2) into (1) and
using (3), we obtain an expression for the concentra-
tion of the vaporizing fuel component at the surface of
the plate in terms of the latent heat and the sublima-

tion and plate surface temperatures:

Corw = [1 + 2 (Z— 1)]‘1><

x(Z = exp [% (Tiw— - 7—35—”) (4)
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We will show the applicability of (4) to gas systems
that do not obey the perfect gas laws. With allowance
for the change in volume, the Clausius-Clapeyron law
takes the form:

d T d
L=TZLV, or L=— E(RT — ap)
<a=_H;T—V). (5)
P

Here, V is the change in volume during sublimation,
and ¢ is the deviation of the system from the ideal
state.

In accordance with [6], we replace the partial pres-—
sures with the effective pressures f characterizing
the tendency of the material to propagate between the
inhomogeneous phases of the system, and using (5),
we obtain

L

. dT. (6)

dmf_ﬁd—=

After integration from Tg to Tw and correspond-
1ngly from fmw to fno,

m,_Lw_:_i(L_ L), (7)

To obtain a unique determination of the position of
the reaction fronts @ = ¢(n) and ¥ =(n) and the con-
centration of the fuel component Cy © in the plane ¢
it is necessary to examine the combined diffusion-
thermal problem.

When pyug =1 the equation of conservation of mo-~
mentum is autonomous and the solution is given in [7].

For the region 1 between the wall surface and the
reactionfront ¢ (see the figure),for the vaporizing fuel
component from the solution of the diffusion equation
transformed to the form

C(n) =CilNs

K(n) Nge-1
® (1, Vg) = [f%] ) , (8)

with boundary conditions

D(n, Vs)dn + Ce

S

at Y!:O,

O =1+ 22 (2 — )]

Cor(@=Cn, at n=9, (9)

we obtain an expression for the concentration distri-
bution

CrnlM) = {cm,frb(n, Nsoydn+[14 22— 1] x

o

P

x @, NoyanH{j@, Nsganj™. - (10)
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Similarly, for the vaporizing oxidizer component
from the solution of Eq. (8) with boundary conditions

Cop= n%n"—(z— 1)[1+j;‘_jn(z— 1)}‘1

atm=0 and Co(p)=0 at n=g (11)

we obtain the concentration distribution

o = 2= @ =1+ 72z =[x

Sd)(n NsC)dn{ @ (n,Nsc) dn}_l. (12)

n
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The expressions for the distribution of fuel com-
ponent concentration in region 2 (between the reaction
fronts ¢ and ¥) and oxidizer concentration in region 3
(between the reaction front § and the outer edge of the
boundary layer) coincide with those obtained in [1] and
are, respectively, equal to

" . 4 -1
Crn() = Co§ O (0, Noo) dn {{ D (n, Noydnf™, (1)
$ b

Y 4 B
Co (M) = Co§ © (0, Nso)an {{ @ (n, Ny} (14)
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From the condition of mass balance in the ¢ plane
for the mixture of vaporizing components we obtain
expressions relating the quantities of interest ¢, ¥,
Cmoy:

¢
" M
Coa |1+ 22 (Z— 1) |JO (0, Nso)dn =
Q
@

[1— 22 z—n)]{om, Ns)dn. (15)

I

It follows from the condition of mass balance of the
fuel component and external oxidizer flow in the ¥
plane that

$ ®
Cro {@ (1, V) = alou{ D (0, Nsc)dm. (16
1 £l

Hence

@ Y
Cmo = aCo { @ (1, Nsc)dn{J© (n, Nso)dn}™ . (17)
¢ 1

After substituting (17) into (15) we can uniquely de-
fine the position of the reaction front ¥

e

a1+ 2 5 — 1) { @ 1, Nac) i —
2[1_%(2_1)“@(71, Nsc)dn , (18)
or
aCoss| 1+ 72 (Z — )| R (0, ) =
=[1—“,Z‘:L (Z—l)}R(L«p), (19)

where, as in [1},

iy CrE s
R (ny, 7]2)==3 ® (n, Nso)dn = 5 [W{\ dn.

N kY
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If Ty, > T*, the fuel-oxidizer mixture, vaporizing
from the plate surface, reacts directly at the wall.
After the chemical reaction the concentration of the
fuel component at the wall

cmw_[

The solution of Eq. (8) with boundary conditions
(20) and C,, () =0 at 7 = ¥ leads to the following ex-
pression for the concentration distribution in the re-
gion between the surface of the wall and the reaction
plane ¥:

Conl(m) = [1 “”;f(z—i)][ug':(z-i)]‘lx

(5 — )][1+%(z_1)]“. (20)

¢
x | ©(n, Nso)dn {B‘D(TI,NSc)dn} : (21)

Using the condition of mass balance in the plane ¥
again leads to relation (19).

As follows from (15), it is not possible to deter-
mine ¢ and Cyy o uniquely solely from the concentra-
tion conditions. For the unique determination of ¢ and
Cmo it is also necessary to consider the thermal con-
dition for the reaction plane ¢ following from the law
of conservation of energy:

. . Npr de
H1 —Hz =q(N—§:E;]‘)¢ at n=9o. (22)

The values of the enthalpies H; and H, are found
from the solution of the energy equation in the form

[5]
H — (Nor— 1) (5) ' = wo2(1 — Vo) (S 1) (23)

with boundary conditions
H(0)=H, at n=o,
Hy=Hy,=H, at n=g¢,

=Hy=H, at n=v.

H=H, at =1,

Correspondingly, for regions 1 and 2 we obtain for
the enthalpies

H—Hy = u[ T —No:d (0, 0)]

7
Fa
+{He—Ho—u [ 5 — Mo O, 9]} T (20)

H—H, = (- — $)— Nood (9. m)] +
ot — ([~ 5]

- NPJJ(CP’ ‘l’)]

IRc
J (Mg, M) = §§3§ § [T anan,
k2t

'Il; 1

I(y,me) = \ [I,‘{—EZ%JX dn (4= Npr—1),  (25)

Ny

The functions I, R, and J have been tabulated for
various values of the Np,. and Ng, numbers and dis-

tributions of the function of the injection parameter
K(n) obtained from a solution analogous to the Blasius
problem [7].

From condition (22), together with (10), (24), and
(25), we obtain one more expression which, together
with (15), enables us uniquely to define the values of
the parameters ¢ and Cp ¢:

{He—Ho—uot[F- — N2l 0, D row —

— {H¢—H¢— Uoo? [(%q — q;)_

S

=q11\\/,1: {C"“’ [ (Z“i)J }H<0 5 20

SC

We use the distribution of concentrations and en~
thalpies to determine the resulting effect on heat trans-
fer. Since

az 96
3y O +§i}hi B ) o (27)

(g_i 0p>gw = (%)gw - <; hi 63.%)8‘"’ ’ (28)

or, after conversion to the variable 7, the quantity of
heat supplied to the vaporizing surface

=R ()] oo

for a binary mixture

()= i [ — (T - H 0T ), 30

substituting values of the concentration and enthalpy
gradients from Eqs. (10), (12), and (24),

(x %)gw: %’:{H"—H‘”——

— [ Mol 0, 0]} 7y

_ TwHy aCoeo R (9, 1) 31
Nor BOORGY (31)

From the heat-balance equation for the vaporizing
plate, the quantity of heat expended on heating the plate
is

(A 8T /0y)sw= (M IT [0y)gw— L(0V) (32)
or, suhstituting (31) into (32),

(35—l £ -

Y Jsw 2

— NpJ (0, qi)J} r(‘o%a -

_ TpHyy CeR (9, 1)
Np, RO, @) R (1, )

— L(pv),, . (33)

Here, the third term on the right side of the equa-
tion takes into account the latent heat of sublimation.
To determine the total mass flow of vaporizing com-
ponents from the wall we use the Stefan formula [8],
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taking into account the fact that the mixture is binary
and the partial vapor pressure of the vaporizing sub-
stances at the surface is equal to the saturation pres-
sure at the surface temperature

dpp/dy = —vD (P —p,). (34)

But since for a binary mixture Dy =Dy =D = const
and depends only slightly on concentration, after con-
version to the variable n = n(x,y)

T dp;,

s =— (P — D) (35)

and, integrating, we finally obtain

In(P—pn)=752-n+C (36)

LLOOT

where C is a constant of integration. The total flow
from the wall due to the "injection effect" is usually
localized in the boundary layer, the conditions at the
wall and at the outer edge of the boundary layer being
Pm=Pn=0 at n=1.

Pm = Pmw &t n=0,

From the first of these conditions we find the con-
stant of integration C =1n(P ~ pyw) and, after sub-
stituting into (36),

P—pm — o
£ — Pmw Ut

P Ve (37)

uoo’lf

In n

e

From (37), using the second boundary condition,
we find the value of the mass flow from the wall

T.
0) =520 52 (38)

We substitute (38) into (33)

I Y

THw Coxuf(®, 1) Lryu
Npe R0, @ R(1,9) Ng

o Z
1n Z—:l“. (39)

Equation (32) is valid if there are no chemical re-
actions at the wall. If Ty > T* and the vaporizing com-
ponents react at the surface of the plate,

(%)= ) — B (0D 55),,
(O H oot Qg — L (%) - (40)

Here, we assume that the reaction proceeds with
liberation of heat. Moreover, if we take into account
radiation from the wall, we must add the extra term
eoT, to the right side.

For a binary mixture

(;\‘ %)sw—: <;‘I %)gw-

aCy

Cy,
— (humD By + hepoD —@*)gw -+

+Hw(pv)w+qgw'—L(pv)w ’ (41)

where hy, and hyy are the enthalpies of each of the
components at the wall temperature.
Since from the mass balance condition we have

= hlwclw (pv)w - hz‘” (1 - C2w) (pv)w ’
then
aT aT
M )= S Ha—= D)+ 0o - (42)

Substituting values of the concentration and enthalpy
gradients from Eqgs. (21) and (24) into (30), we deter-
mine the heat flow to the wall due to conduction

(r %Tyi)gw = N‘—;'r‘{ﬂ\[, —H,—

rye 55—
— w2 [ —Ned 0.9 755

__TwHy {ﬂ’l& (Z-—i)—-i]x

Np. |Lmpy

I SR

With allowance for (43) the quantity of heat expanded
on heating the vaporizing wall in the presence of a
chemical reaction at its surface will be

<?‘4 %)sw - NL:; {H¢ —Hu—

gt [-lpzi——NPrJ (©, ‘P)]Tﬁ;‘) -

 TwHw Fam gy 4%
% [mm (Z—1) 1]

<@ =] rom +

(Hy — L) Ty, z
”—“N;M In g—p + e - (44)
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